

eMAG Marketplace

API Documentation v4.4.4

09.12.2021

2

Version Date modified Changes

4.1.2 25.09.2017 Added return_reason and return_type description details
Added type key on order read and order filtering
Updated product validation_status values
Added info about start_date limitations during special campaigns

4.1.3 13.02.2018 Updated product stock maximum value
Updated order attachment types
Added EAN method for attaching offers on existing products
Added billing_name and billing_phone on order/read
Added awb_format on awb/save

4.2.0 01.03.2018 Added a limit for the number of entities per request
New API endpoints available with 1st of May 2018
Removed awb_format on awb/save

4.2.1 20.03.2018 Added time based throttling for save requests starting with 1st of May 2018
Added offer_validation_status key on product_offer/read and filter

4.2.2 08.05.2018 Removed product statuses from return requests
Updated return request status change permissions
API endpoints availability change, now beginning with 1st of August 2018
Removed “Invoices”, “Details” and “Observation” keys from order fields

4.3.0 03.10.2018 Removed mandatory label from product url
Added AWBs key on rma/read
Extended AWB read method: AWB number, status, type, courier name, courier ID and courier account ID
Added new method for downloading AWB .zpl format types
Added type key on rma/read
Added attachments, cashed_co and cashed_cod keys on order/read
Added callback URLs section
Added rma_id on awb/save

4.3.1 05.02.2019 Added new resource for saving volume measurments
Added other currencies option on product_offer/save
Added locker delivery option on order/read and awb/save
Updated the time based throttling for save requests

4.3.2 18.02.2019 Order status matrix update
Important changes in permisions for updating orders (3.5) and removing products from an order (3.5.1)
Added supply_lead_time key on product_offer/save

4.3.4 01.10.2019 Added rate limiting for invalid requests
Added new order cancelation reasons
Added “locker_name” key on order/read
Adjusted the maximum number of elements returned for all read requests
Adjust measurements values decimal length

4.3.5 08.10.2019 Changed the warranty requirement regime

4.3.6 03.12.2019 Part Number input changes

4.3.7 28.09.2020 Added new REST resource for updating stock only
Added new resource for proposing offers in campaigns

4.3.8 13.10.2020 Added new invoice resources
4.3.9 23.11.2020 Added new resource for reading customer invoice data

4.4.0 26.04.2021 Added “source_language” key on product_offer/save for publishing product content in a different language
than the platforms default

4.4.1 28.04.2021 Added voucher discounts distribution on order/read

4.4.2 16.06.2021 Added “detailed_payment_method” key on order/read
Added Draft publishing API details
Changed product ownership logic

4.4.3 08.12.2021 Added new API for reading commission at offer level
Added “return_reason” and “observations” keys at product level on rma/read and rma/save
Changed reading_rma and saving_rma examples (7.4)

4.4.4 09.12.2021 Added “language” parameter on category/read

3

Table of Contents

1. eMAG Marketplace API ... 5

1.1. Conventions ... 5

1.2. Request, resources and actions... 6

1.3. Pagination and filters .. 7

1.4. Response .. 7

1.5. Rate limiting ... 8

1.6. Callback URLs.. 8

2. Publishing products and offers .. 9

2.1. Reading categories, characteristics and family_types .. 9

2.2. Reading VAT rates..12

2.3. Reading Handling Time values ...12

2.4. Sending a new product ..12

2.4.1. Draft product ...12

2.4.2. Product ..12

2.5. Example for a new product ..18

2.6. Updating existing offer ..18

2.7. Saving volume measurements on products ..18

2.8. Reading and counting products and offers ...19

2.9. Product validation responses ...22

2.10. Matching products...22

2.11. Attaching offers on existing products ...23

2.12. Reading commission for an offer ...25

3. Updating stock..25

4. Proposing offers in campaigns ..26

5. Processing orders ...27

5.1. Order fields..27

5.1.1. Product field in order details ..30

5.1.2. Customer fields in order details..33

5.1.3. Order invoices ..34

5.2. Order notification, acknowledgment and order filters ...35

5.3. Order status matrix..35

5.4. Order filters ...36

4

5.5. Updating orders ...37

5.5.1. Removing products from an order ...37

5.5.2. Adding products to an existing order..38

5.5.3. Returned products and storno route ..38

6. Shipping orders...41

6.1. Saving AWB ...41

6.2. Reading AWB ...42

6.3. Reading AWB PDF files ...44

6.4. Reading AWB ZPL type ...44

6.5. Counting Localities...45

6.6. Reading Localities ..45

6.7. Reading courier accounts ...46

7. Processing return requests ...46

7.1. Return requests filters ...50

7.2. Status change permissions ...51

7.3. Return request deliveries ...51

7.4. Examples requests and responses ..51

8. Invoice API ..52

8.1. Reading invoice categories...52

8.2. Reading invoice data ..52

8.3. Reading customer invoice data ..55

5

1. eMAG Marketplace API
eMAG Marketplace API is developed by eMAG for Marketplace partners in order to allow them to use their own CRM’s

/ ERP’s. This document explains the methods for calling the API.

The API can be used in order to:

 send products and offers

 process orders

1.1. Conventions

We define MARKETPLACE_API_URL constant of being the API URL of the platform (ex: https://marketplace-
api.emag.ro/api-3)
We define MARKETPLACE_URL constant of being the URL of the platform (ex: https://marketplace.emag.ro)
We define DEFAULT_CURRENCY constant of being the default currency of the platform (ex: RON).
All API parameters are key-sensitive.

Platform Romania Bulgaria

MARKETPLACE_URL https://marketplace.emag.ro https://marketplace.emag.bg

MARKETPLACE_API_URL https://marketplace-api.emag.ro/api-3 https://marketplace-api.emag.bg/api-3

Protocol HTTPS HTTPS

Locale ro_RO bg_BG

Default currency RON BGN

Platform Hungary Poland

MARKETPLACE_URL https://marketplace.emag.hu https://marketplace.emag.pl

MARKETPLACE_API_URL https://marketplace-api.emag.hu/api-3 https://marketplace-api.emag.pl/api-3

Protocol HTTPS HTTPS

Locale hu_HU pl_PL

Default currency HUF PLN

To access the API, simply make a Basic Authorization request with your username, password and a base64 computed hash.

Please note that user should be granted API rights in order to access the API.

$hash = base64_encode($username . ':' . $password);

https://marketplace-api.emag.ro/api-3
https://marketplace-api.emag.ro/api-3
https://marketplace.emag.ro/
https://marketplace.emag.ro/
https://marketplace.emag.bg/
https://marketplace-api.emag.ro/api-3
https://marketplace-api.emag.bg/api-3
https://marketplace.emag.hu/
https://marketplace.emag.pl/
https://marketplace-api.emag.hu/api-3
https://marketplace-api.emag.pl/api-3

6

1.2. Request, resources and actions

A Marketplace API call is represented by sending a request to API URL of platform. Every request consists of a POST to an

URL like:

MARKETPLACE_API_URL/resource/action
Ex: https://marketplace-api.emag.ro/api-3/product_offer/save

RESOURCES AND AVAILABLE ACTIONS

Resource Resource URL Available actions

product_offer MARKETPLACE_API_URL/product_offer read save count match

measurements MARKETPLACE_API_URL/measurements save

offer_stock MARKETPLACE_API_URL/offer_stock/{resourceId}

campaign_proposals MARKETPLACE_API_URL/campaign_proposals save

order MARKETPLACE_API_URL/api-3/order read save count acknowledge

order/attachments MARKETPLACE_API_URL/order/attachments save

message MARKETPLACE_API_URL/message read save count

category MARKETPLACE_API_URL/category read count

vat MARKETPLACE_API_URL/vat read

handling_time MARKETPLACE_API_URL/handling_time read

locality MARKETPLACE_API_URL/locality read count

courier_accounts MARKETPLACE_API_URL/courier_accounts read

awb MARKETPLACE_API_URL/awb read save

rma MARKETPLACE_API_URL/rma read save

invoice/categories MARKETPLACE_API_URL/api-3/invoice/categories read

invoice MARKETPLACE_API_URL/api-3/invoice read

customer-invoice MARKETPLACE_API_URL/api-3/customer-invoice read

https://marketplace-api.emag.ro/api-3/product_offer/save

7

Below a code example using the resource "category" and the action "read"

Resource Example Context

category/read
reading_categories.

txt

http method: POST

The API needs authorization and has an IP level filtering. Before testing, sellers should provide a list of whitelisted IP’s.

eMAG Marketplace will only allow API calls only from those IP’s.

The POST data consist of 1 mandatory key:

REQUEST

Key Description

data Data to be passed to the API. The following document will describe keys.

1.3. Pagination and filters

In order to limit the number of items returned, read actions accept pagination by passing to POST data following

parameters:

PAGINATION

Key Description Default value Example

currentPage Set current page displayed 1 currentPage =3

itemsPerPage Set number of items to be displayed in one page. Maximum is set to 100. 100 itemsPerPage=50

Also, filters can be included in POST to refine result set. Filters vary depending on the resource called and are exampled

on every resource section.

1.4. Response

When an API call is made, the server MUST reply with a response. The response will ALWAYS be JSON formatted and the

header 'Content-type: application/json' will always be passed.

RESPONSE

Key Description

isError Boolean value representing response status.

messages Messages included in the response, like error messages, etc.

results Results included in the response, mostly when reading resources.

8

IMPORTANT: Every API request must have a response and the response must contain the key “isError” and its value

must be “false”. For each call that does not have the key and “false” value, we recommend setting up alerts, as the call

most likely was not interpreted. We also recommend logging all calls and the corresponding API response for a 30 days

period.

Every request must have at most 4000 elements. If the call surpasses this limit the call will have a response with key

“isError:true” and “message: Maximum input vars of 4000 exceeded”.

In the event of an documentation error when saving a product, the API will return and “isError:true” message, but the

new offer will be saved and processed.

1.5. Rate limiting

All resources described at the table from paragraph 1.2 have the following limits:

 Maximum 1 request every 3 seconds and maximum 20 requests every 1 minute. For optimal performance we

recommend not scheduling requests at fixed hours. For example use 12:04:42 as a starting point instead of

12:00:00. The following responses are possible:

Time throttling limit is exceeded Time throttling limit was not reached

HTTP/1.1 429
Date: Wed, 21 Mar 2018 08:22:44 GMT
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked
X-RateLimit-Limit-3second: 1
X-RateLimit-Remaining-3second: 0
Server: kong/0.12.1
{"message":"API rate limit exceeded"}

HTTP/1.1 200
Date: Wed, 21 Mar 2018 08:23:52 GMT
Content-Type: application/json
Transfer-Encoding: chunked
X-RateLimit-Limit-3second: 1
X-RateLimit-Remaining-3second: 0
Server: nginx
{"isError":false,"messages":[],"results":[]}

Invalid requests will also be limited to a maximum number of 3 requests every 1 minute or 180 requests every 1 hour.

 For API resources that accept bulk save, the limit is 50 entities per request. For optimal performance we

recommend using between 10 and 50 entities per request.

1.6. Callback URLs

The following callback URLs can be activated from the Marketplace interface:

Context Description

New order You will be notified for each new order

Order cancellation You will be notified whenever an order in canceled

New return & status change You will be notified for each new return request and select status changes (New, Acknowledged & Received)

AWB status change You will be notified for each AWB status change

9

2. Publishing products and offers

We define a draft product as a minimum set of details required to publish a product. The elements are:

 Name

 Brand

 Part number

 Category (optional)

 EAN (optional)

 Source language (optional)

We define a product as a list of elements displayed for a product page. The elements are:

 Name

 Brand

 Part number

 Description

 Images

 Product characteristics (and product families)

 Category

 Barcodes (optional)

 Other attachments (optional)

 EAN (required depending on Category)

 Source language (optional)

We define an offer as a list of elements required for an offer to be available for a product. These elements are:

 Price

 VAT rate

 Warranty

 Numerical stock

 Handling_time

eMAG Marketplace API allows a seller to:

 Send new products and offers

 Send new offers for existing eMAG products (sold by eMAG or any other seller)

 Update existing own offers and/or products

2.1. Reading categories, characteristics and family_types

Every eMAG product has to be included in a certain category. Sellers cannot create new categories or change existing

ones. Also, a seller can only post products and offers in its allowed categories list.

Reading categories without parameters will generate a response containing the first 100 categories. The read can be

paginated thus obtaining a full list of categories. Only active categories will be returned.

When passing a category id, the API will return the category name and the list of available characteristics and their

corresponding IDs, as well as the available product family_types and their corresponding IDs. Reading categories one by

one is important as it is the only way to identify the restrictive characteristics and corresponding allowed values.

10

You can read the categories and their characteristics through the API.

The resource is category and the available actions are read and count.

 CATEGORY – read

Key – level 1 Key – level 2 Key – level 3 Description Type Example

id Category eMAG id Integer id=604

name Category name String name=”Music”

is_allowed Indicates if the seller can send
products and offers in the
category. In order to request
access to a specific category,
you can use the Marketplace
interface.
0 = No 1 = Yes.

Integer is_allowed=0

parent_id Id of the parent category Integer parent = 12

is_ean_mandatory Indicates if the sending an EAN
is mandatory when saving
products
 1 = mandatory
 0 = optional

Integer is_ean_mandatory =1

is_warranty_mandatory Indicates if adding warranty is
mandatory when saving
products
 1 = mandatory
 0 = optional

Integer is_warranty_mandat
ory =1

characteristics All characteristics available in
category

List of
arrays

id Characteristic eMAG id Integer id=38

name Characteristic name String name=”Audio”

 type_id Characteristic type. Indicates
the type of values that a
characteristic can accept.

Single value characteristics:
 1 = Numeric (ex: 20, 1, 30, 40,

etc)
 60 = Size (ex. 36 EU, XL INTL,

etc)
 20 = Boolean (Yes, No, N/A)

Multiple values characteristics:
 2 = Numeric + unit of measure

(ex. 30 cm, 45 m, 20 GB, 30
inch, etc)

 11 = Text Fixed (max length
255 chars) (ex. Blue, Green,

Integer type_id=11

11

Laptop, Notebook, Copil,
Man, Woman)

 30 = Resolution (Width x
Height) (ex. 100 x 200, 640 x
480)

 40 = Volume (Width x Height x
Depth - Depth 2) (ex. 30 x 40 x
50 - 10)

display_order Characteristic display order Integer display_order=6

 is_mandatory Indicates if the characteristic is
mandatory when sending a
product. Possible values are 0
(the characteristic is not
mandatory) and 1 (the
characteristic mandatory).

Integer is_mandatory=0

 is_filter Indicates if the characteristic
represents a filter in the
website. Possible values are 0
(the characteristic is not filter)
and 1 (the characteristic is a
filter).

Integer is_filter=1

 allow_new_value Indicates if the current
characteristic allows you to
submit new values that are
automatically validated.

Integer allow_new_value=0

 values List the first 256 existing values
of the current characteristic.
Important: This key is available
only when reading a single
category.

Array 0 => 'Value 1'
1 => 'Value 2'

family_types List of all family types available
in category

List of
arrays

 id Family type id Integer Id=95

 name Family name String name=”Quantity”

 characteristics All characteristics of current
family type

List of
arrays

 characteristic_id Characteristic Id Integer characteristic_id=44

 characteristic_famil
y_type_id

Can only have 3 values, each
corresponding to a different
display method:
“1" ="Thumbnails";
"2"="Combobox";
"3"="Graphic Selection"

Integer characteristic_family
_type_id=2

 is_foldable A foldable characteristic wraps
all family members (with
different characteristic values)
as one item in the eMAG
category listing

Integer Is_foldable=1

12

 display_order Characteristic display order Integer

By default responses will contain category names in the platform language but you can also send the language as a

parameter, in case you want to receive category names in a specifc language. Available languages are: EN, RO, HU, BG,

PL, GR and DE

E.g. https://marketplace-api.emag.ro/api-3/category/read?language=en

2.2. Reading VAT rates

When sending an offer, you have to send the VAT rate id by sending us a valid VAT id.

The resource is vat and the action is read. The API will return the list of available VAT rates and their corresponding id’s.

2.3. Reading Handling Time values

When sending an offer, you have to send the Handling Time by sending us a valid value.

The resource is handling_time and the action is read. The API will return the list of available handling_time values.

2.4. Sending a new product

2.4.1. Draft product

Sending a draft product requires you to send a smaller set of data for publishing a new product. The information is saved

in eMAG platform and the necessary details for publishing a product can be added at any time.

Please note:

Draft products won’t be sent to eMAG Catalogue team for validation unless you send the other details necessary for

publishing a new product (described below).

If an EAN published on a draft product is found in the eMAG catalogue you can skip the product publishing process and

attach the offer directly to existing product.

Details for sending a new draft can be found here.

2.4.2. Product

Sending a product for the first time requires you to send the entire product documentation and all the offer data. Please

note that creating new products implies human validation, so a new product will not be displayed in eMAG platform

immediately.

The products that are not compliant with eMAG Documentation Standard will not pass the human validation; in this case

you will be notified by our support team. The eMAG Documentation Standard that is available upon request for each

category, and it contains the best practices for documenting a product.

In order to send a new product, the resource is product_offer and the available action is save.

https://marketplace-api.emag.ro/api-3/category/read?language=en
https://marketplace.emag.ro/documentation/api/external

13

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

id

Seller internal product id. This
is the primary key for
identifying a product offer.

Required. Integer value
between 1 and 16777215.

id=243409

category_id

Product category eMAG id. Required. Integer between 1
and 65535.

category _id=506

vendor_category_id Seller internal category id. Integer. Optional. vendor_category_id=506

part_number_key

eMAG part_number_key.
Used for attaching a product
offer to an existing product in
eMAG platform. If you want to
create new product, don’t set
this key.

Optional. String. Will be
validated.

part_number_key=ES0NKB
BBM

source_language The language of the product
content input.
If it differs from the platform
local language, then the
product will enter a
translation process.
Available values for this key
are: ro_RO, bg_BG, hu_HU,
pl_PL, de_DE, it_IT, fr_FR,
es_ES, nl_NL, zh_CN, cs_CZ,
ru_RU.

Optional. String.
Default value:
 on Marketplace RO: “ro_RO”
 on Marketplace BG: “bg_BG”
 on Marketplace HU: “hu_HU”

source_language=”de_DE”

name

Product name. Should be
consistent with eMAG Product
Documentation Standard.

Required. String between 1
and 255 characters long.

name=”Test product”

part_number

Manufacturer unique
identifier of the product.

Required. String between 1
and 25 characters.
Important:
The following characters will
be automatically stripped:

 spaces []

 comma [,]

 semicolon [;]
Example: “part number;” will
be saved “partnumber”

part_number=”md788hc/a
”

description

Product description. Should
be consistent with eMAG
Product Documentation
Standard.

Optional. String between 1
and 16777215 characters. Can
contain basic HTML tags.

description=”test”

brand

Brand name. Should be
consistent with eMAG
Product Documentation
Standard.

Required. String between 1
and 255 characters.

brand=”Brand test”

weight The weight of the product Optional. Decimal value
between 0 and 999999. Up to
six decimals.

weight=12.123456

14

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

force_images_downloa
d

 Image attachement
redownload flag. Only to be
used when updating product
documentation
1-forces images redownload
0-images will not be
redownloaded

Optional. Integer value, 1 or 0.
Default = 0

force_images_download=1

images Product images data array. Optional. List of arrays.

 display_type Image display type.
1 – main image
2 – secondary image
0 – other images

Optional. Default value 0.
Integer value between 0 and
2.

display_type=1

url Seller image URL. Should be

consistent with eMAG Product
Documentation Standard.
Max 6000px x 6000px and 8
Mb in size.

Required. String between 1
and 1024 characters. Valid
URL. JPG, JPEG or PNG file
type.

url=”http://valid-url.jpg”

characteristics

Characteristic data. Note that
characteristics have to be
category valid (be part of
category template). Should be
consistent with eMAG Product
Documentation Standard.

Optional. List of arrays.

id Characteristic eMAG id. Required. Integer value

between 1 and 65535
id=24

value Characteristic value. Should

be consistent with eMAG
Product Documentation
Standard.

Required. String between 1
and 255 characters

value=”test”

family Family array. Used to create a
new family, add a product to
an existing family, or removing
a product from a family.

Optional. Array.

 id The unique integer identifier
of the family in your platform.
If set to 0 (id=0), the product
will be removed from its
current family.

Required. Integer Id=0

 name Required. Seller Family name. Required if family id is not
equal to 0;

name="Test product"

 family_type_i
d

Required. eMAG Family type
id that can be acquired by API
(the resource is category and
the action is read).

Required if family id is not
equal to 0. Integer.

family_type_id=95

15

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

url

Product URL on the seller
website.

Optional. String between 1
and 1024 characters.

url=”http://valid-url.html”

warranty

The warranty offered in
months.

Required/Optional based on
category.
Default value:
- 0 (no warranty) if optional
- No default if required.
Integer between 0 and 255.

warranty=24

ean Product barcode identifier
(EAN -8, EAN-13, UPC-A, UPC-
E, JAN, ISBN-10, ISBN-13,
ISSN, ISMN-10, ISMN-13,
GTIN-14). Please use the
supplier barcode, not your
internal barcodes.

Required/Optional based on
category. No default value.
Array of strings between 6 and
14 characters long. Only
numeric figures allowed.

ean=Array('ean1', 'ean2')

attachments Product attachments data.
Max 10 Mb in size.

Optional. List of arrays.

 id Seller attachment internal id. Optional. Integer value
between 1 and 4294967295.

id=123

url Seller attachment URL. Required. String between 1

and 1024 characters. Valid
URL to document.

url=”http://valid-url”

status

Seller offer status.
1 – status active
0 – status inactive

Required. Integer value, 1 or 0. status=1

sale_price Seller offer sale price without
VAT

Required. Decimal value
greater than 0. Up to four
decimals.

sale_price=51.6477

recommended_price Seller offer recommended
retail price before discount,
without VAT. If set, the offer
will be displayed as promo.

Optional. Decimal value
greater than 0. Up to four
decimals. Must be greater
than sale_price.

recommended_price=51.64
77

min_sale_price Seller’s min offer sale price
without VAT

Required on first product save.
Decimal value greater than 0.
Up to four decimals.

min_sale_price=40.6477

max_sale_price Seller’s max offer sale price
without VAT

Required on first product save.
Decimal value greater than 0.
Up to four decimals. Must be
greater than min_sale_price.

max_sale_price=60.6477

currency_type Offer currency. Only send the
key if it is different from the

Optional. 3 characters string. currency_type=”EUR”

16

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

local Marketplace currency.
Available options: EUR or PLN

stock

Offer available quantity array. Required. List of arrays. {
0=>{
warehouse_id=1,
value=20}}

 warehouse_id The id of the warehouse.
Use warehouse_id=1 for only
one warehouse.

Required inside stock array.
Integer.

warehouse_id=1

 value Offer available quantity. Required inside stock array.
Integer between 0 and 65535.

value=20

handling_time Handling time array. If no
array is sent, the products are
shipped the same day they are
received.

Optional. List of arrays. {
0=>{
warehouse_id=1,
value=1}}

 warehouse_id The id of the warehouse.
Use warehouse_id=1 for only
one warehouse.

Required inside handling_time
array. Integer.

warehouse_id=1

 value Handling time, in number of
days counted from the day the
order was received. If
handling_time = 0 the order
will be shipped the same day it
is received.

Required inside handling_time
array. Integer value between 0
and 255. Default value = 0.

value=0

supply_lead_time The number of days needed to
restock the product, from
order placement to the
supplier or production order,
until product reception in the
warehouse.
Available values for this key
are: 2, 3, 5, 7, 14, 30, 60, 90,
120

Optional. Integer.
Default value = 14

supply_lead_time=5

start_date

If it's a new offer, it
represents the date your offer
will be available from. For
offer updates, it schedules
value updates for the
following data:

 sale_price

 recommended_price
 stock

 handling_time

 vat_id

 warranty

 status
All other data will be updated
on the fly. Using start_date,

Optional. Text in YYYY-MM-DD
format. Date can be as far as
60 days in the future (cannot
be earlier than tomorrow).
Cannot be null.

start_date=”2014-12-31”

17

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

for example, you can
schedule the inactivation of
an offer, a price update, etc.

vat_id Seller offer VAT rate id. Use
/vat/read to display possible
values.

Required. Integer. Ex: vat _id=1

IMPORTANT:

 During campaings with stock in site we will not allow the following:

o regular offer updates;

o updates sent during campaign time that have a start_date in the future;

o previously scheduled updates with start_date during campaign time.

 You can save an offer update with currency_type different from the local Marketplace currency and start_date

before the end of the current month. Any update attempt with a start_date greater than the last day of the current

month will be rejected.

 Be aware that prices published directly in the local Marketplace currencies will be overwritten by prices published

in other currencies when these are recalculated and published automatically on FX change at the beginning of

every month. The automated recalculation can be disabled on request.

 Min / Max sale price keys are used for price check purposes and are mandatory for all calls used to create

product/offers for the first time. As a best practice we recommend sending these keys only when you want to

change their values.

 Sale price will be validated against min_sale_price and max_sale_price. Any offer that is not within the specified

range will be rejected.

 In order to change a previously sent product image or attachment the url should be different from the one already

sent. We reload the images only if the URL differs.

 We recommend sending the product data only upon product create/update, as there is no need to resend product

unless it changed. Also we recommend sending the offer data upon changing (no matter the frequency) and at

least weekly (even if the offer is the same) rather using periodical sending (crons, agents). You should program

marketing campaigns using “start_date” campaign. Also please offer the possibility for an offer to be attached to

an existing eMAG product (using part_number_key).

 The product part number should be assigned to a single product.

If a product part number is re-used (set on a second product) an error will be generated and the product will NOT

be saved.

 Multiple EAN codes can be set on an offer, but one EAN product code can NOT be used on two or more products.

If one EAN code is added on a second new product, an error will be generated and the product will NOT be saved.

If one EAN code used on a new product is already linked to a product in the eMAG catalogue, the offer will be

automatically associated to that existing product.

 In the event of an documentation error when saving a product, the API will return and “isError:true” message,

but the new offer will be saved and processed.

 When adding a product to a family

o The category id of a product and the category id of its family type (family_type_id) must be the same.

18

o All characteristics that define a family must be present and must have a valid value

o All characteristics that define a family must have a single value

o If a family is not valid, you will receive a warning response, but the product will be saved/updated

o When moving a product from one family to another you only have to send the product with its new family

type, id and name and make sure you follow the same rules as above

2.5. Example for a new product

Resource Example Context

product_offer/save
new_product (4).txt

http method: POST

2.6. Updating existing offer

When updating an existing offer for a product, you should send only the offer, without the documentation. Mandatory
when updating a product offer are the following keys:

 id

 status

 sale_price

 vat_id

 handling_time

 stock

Please note that although the API permits sending the entire documentation on each offer update (price change, out-of-

stock change, etc.) we do not recommend or encourage such a practice.

If you need to deactivate a valid offer on the website, you should send the offer with the “status = 0”.

2.7. Saving volume measurements on products

In order to save volume measurements on existing products, the resource is measurements and the available action is

save. The measurement units for volume are millimeters and grams.

MEASUREMENTS – save

Key – level 1 Description Constraints Example

id Seller internal product id. This is the
primary key for identifying a product offer.

Required. Integer value between 1 and
16777215.

id=243409

length The length of the product in millimeters
(mm)

Required. Decimal value between 0 and 999999.
Up to two decimals.

length=100

width The width of the product in millimeters
(mm)

Required. Decimal value between 0 and 999999.
Up to two decimals.

width=122.50

19

MEASUREMENTS – save

Key – level 1 Description Constraints Example

height The height of the product in millimeters
(mm)

Required. Decimal value between 0 and 999999.
Up to two decimals.

height=250

weight The weight of the product in grams (g) Required. Decimal value between 0 and 999999.
Up to two decimals.

weight=1254.50

Resource Example Context

measurements/save
measurements.txt

http method: POST

2.8. Reading and counting products and offers

In order to check the existing products (offers) and their status, the resource is product_offer and the available action are

read and count.

 PRODUCT_OFFER – read

Key – level 1 Key – level 2 Description Type Example

part_number_key eMAG part_number_key. String part_number_key=ES0
NKBBBM

number_of_offers How many sellers have active offers on this product Integer number_of_offers=3

buy_button_rank The rank of the offer in its race to win the <Add to cart>
button

Integer buy_button_rank=1

best_offer_sale_price Best selling price available in eMAG for the same Product Decimal best_offer_sale_price
=51.6477

best_offer_recommend
ed_price

 The corresponding recommended price for the offer
holding the best selling price

Decimal best_offer_recommen
ded_price=54.6477

ownership Indicates who has ownership on the product’s
documentation. Posible values:
1 – Eligible for content updates
2 – Not eligible for content updates*

*For products with ownership = 2, any content updates
will be rejected.

Integer ownership=1

category_id Product category eMAG id. Integer category _id=506

vendor_category_id Seller internal category id. Integer vendor_category_id=5
06

20

 PRODUCT_OFFER – read

Key – level 1 Key – level 2 Description Type Example

id Seller internal product id. This is the primary key for
identifying a product offer.

Integer id=243409

brand Product brand name. String brand=”Brand test”

name Product name. String name=”Test product”

part_number Product part number. String part_number=”md788
hc/a”

sale_price Seller offer sale price without VAT Decimal sale_price=51.6477

recommended_price Seller offer recommended retail price before discount,
without VAT.

Decimal recommended_price=
54.6477

currency Product price currency. String currency='RON'

description Product description. String description=”test”

url Product URL on the seller website. String url=”http://valid-
url.html”

warranty The warranty offered in months. Integer warranty=24

ean Product barcode identifier (EAN -8, EAN-13, UPC-A, UPC-
E, JAN, ISBN-10, ISBN-13, ISSN, ISMN-10, ISMN-13, GTIN-
14).

Array ean=Array('ean1',
'ean2')

general_stock The sum of the stock on all seller warehouses. Is
decremented and incremented when orders are
processed.

Integer general_stock=20

estimated_stock This key takes into account the reserved stock on
unacknowledged orders.

Integer estimated_stock=20

weight The weight of the product Decimal weight=12.123456

status Seller offer status.
1 – status active
0 – status inactive

Integer status=1

images List of
arrays

 url Seller image URL. String url=”http://valid-
url.jpg”

 display_type Image display type.
1 – main image
2 – secondary image
0 – other images

Integer display_type=1

characteristics All characteristics available in category List of
arrays

id Characteristic eMAG id Integer id=38

21

 PRODUCT_OFFER – read

Key – level 1 Key – level 2 Description Type Example

 value Characteristic value. String value=”test”

vat_id Seller offer VAT rate id. Integer vat _id=1

family Product family. Array

 id Family id. Integer id=295

 name Family name. String name=”Test family”

handling_time List of
arrays

 warehouse_i
d

The id of the warehouse. Integer warehouse_id=1

 value Handling time, in number of days counted from the day
the order was received.

Integer value=0

validation_status Product validation status List of
arrays

 value Product validation status value Integer value=4

 Description Product validation status description String Description=”Rejected
documentation”

offer_validation_status Offer validation status List of
arrays

 value Offer validation status value Integer value=2

 Description Offer validation status description String Description=”Invalid
price”

The following filters are available when counting and reading products and offers:

Key Description Constraints

id Displays the details for the corresponding
ext_id.

Optional. Integer value between 1 and 4294967295.

currentPage Set current page displayed Optional, integer.
Ex: currentPage =3

itemsPerPage Set number of items to be displayed in one
page. Maximum is set to 100.

Optional, integer.
itemsPerPage=50

status Returns only the offers with this status. Optional. Seller offer status.
1 – status active
0 – status inactive

22

Key Description Constraints

general_stock Returns only offers with numerical
general_stock that have a value between 0
and the input.

Optional
general_stock = 3

estimated_stock Returns only offers with numerical
estimated_stock that have a value between
0 and the input.

Optional
reserved_stock = 3

validation_status Returns only the results with this validation
status.

Optional.
1 = Awaiting MKTP validation
2 = Awaiting Brand validation
3 = Awaiting EAN validation
4 = Awaiting Documentation Validation
5 = Rejected Brand
6 = Rejected EAN
7 = Rejected Association
8 = Rejected Documentation
9 = Approved Documentation
10 = Blocked

offer_validation_status Returns only the results with this validation
status.

Optional.
1 = Saleable
2 = Invalid price

Reading products for which sellers do not have ownership over the documentation will not return the values sent by

sellers but the values that are displayed in the website.

2.9. Product validation responses

After reading a product, all the elements previously sent are returned, along with the key doc_errors. The key is not null

for products that were rejected due to improper documentation. Below the list of possible errors, when they occur and

the possible actions you need to take.

Product

documetation error list.xlsx

2.10. Matching products

In order to check if a product you sell already exists in eMAG catalog the resource is product_offer and the available action

is match. The matching action is similar to the saving action so you should simply send the entire product documentation

and all the offer data to the product matching resource. Please note that the matching action is available only for one

product at a time therefore the request must be encapsulated in a single array.

As a response to the matching request, the following information will be returned:

23

Key – level 1 Description Type Example

part_number_key eMAG part_number_key. String part_number_key=ES0NKBBBM

name eMAG product name String name=”Test product”

emag_product_url eMAG product name String emag_product_url=”http://www.emag.ro/product/
pd/ES0NKBBBM/”

2.11. Attaching offers on existing products

You can chose between using PNK (part_number_key) or EAN for attaching offers on existing eMAG products

If the product already exists in eMAG catalog, just add the key “part_number_key” with product’s part_number_key or

the “ean” key with a single EAN.

IMPORTANT:

Only one offer can be attached to an existing product (identified by a “part_number_key”) in eMAG catalogue.

In case you try to attach a second offer to a “part_number_key” that already has one of your offers attached, an error will

be generated and the offer will NOT be saved.

If you already have an offer attached to a “part_number_key” please update it instead of trying to attach a new one.

The part_number_key is the last key found in the URL of an eMAG product. It will ALWAYS have both numbers

and characters. Ex: for product http://www.emag.ro/telefon-mobil-nokia-105-black-105-black/pd/D5DD9BBBM/

the part_number_key is D5DD9BBBM.

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

id

Seller internal product id.
This is the primary key for
identifying a product offer.

Required. Integer value
between 1 and 16777215.

id=243409

name Product name. Should be
consistent with eMAG
Product Documentation
Standard.

Required. String between 1
and 255 characters long.

name=”Test product”

ean Product barcode identifier
(EAN -8, EAN-13, UPC-A,
UPC-E, JAN, ISBN-10, ISBN-
13, ISSN, ISMN-10, ISMN-13,
GTIN-14). Please use the
supplier barcode, not your
internal barcodes.

Required if part_number_key
is not present. No default
value. Array of strings
between 6 and 14 characters
long. Only numeric figures
allowed.
OBS: “part_number_key” and
“ean” keys are mutually
exclusive, you should use one
or the other.

ean=Array('ean1')

24

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

part_number_key eMAG part_number_key.
Used for attaching a product
offer to an existing product in
eMAG platform. If you want
to create new product, don’t
set this key.

Required if ean is not present.
String. Will be validated
OBS: “part_number_key” and
“ean” keys are mutually
exclusive, you should use one
or the other.

part_number_key=ES0NK
BBBM

status

Seller offer status.
1 – status active
0 – status inactive

Required. Integer value, 1 or 0. status=1

sale_price Seller offer sale price without
VAT

Required. Decimal value
greater than 0. Up to four
decimals.

sale_price=51.6477

recommended_price Seller offer recommended
retail price before discount,
without VAT. If set, the offer
will be displayed as promo.

Optional. Decimal value
greater than 0. Up to four
decimals. Must be greater
than sale_price.

recommended_price=51.6
477

min_sale_price Seller’s min offer sale price
without VAT

Required on first product save.
Decimal value greater than 0.
Up to four decimals.

min_sale_price=40.6477

max_sale_price Seller’s max offer sale price
without VAT

Required on first product save.
Decimal value greater than 0.
Up to four decimals. Must be
greater than min_sale_price.

max_sale_price=60.6477

currency_type Offer currency. Only send the
key if it is different from the
local Marketplace currency.
Available options: EUR or
PLN

Optional. 3 characters string. currency_type=”EUR”

vat_id Seller offer VAT rate id. Use
/vat/read to display possible
values.

Required. Integer. Ex: vat _id=1

stock

Offer available quantity
array.

Required. List of arrays. {
0=>{
warehouse_id=1,
value=20}}

stock warehouse_id The id of the warehouse.
Use warehouse_id=1 for only
one warehouse.

Required inside stock array.
Integer.

warehouse_id=1

stock value Offer available quantity. Required inside stock array.
Integer between 0 and 65535.

value=20

handling_time Handling time array. If no
array is sent, the products
are shipped the same day
they are received.

Optional. List of arrays. {
0=>{
warehouse_id=1,
value=1}}

25

PRODUCT OFFER – save and create/update product

Key – level 1 Key – level 2 Description Constraints Example

handling_time warehouse_id The id of the warehouse.
Use warehouse_id=1 for only
one warehouse.

Required inside handling_time
array. Integer.

warehouse_id=1

handling_time value Handling time, in number of
days counted from the day
the order was received. If
handling_time = 0 the order
will be shipped the same day
it is received.

Required inside handling_time
array. Integer value between 0
and 255. Default value = 0.

value=0

start_date

If it's a new offer, it
represents the date your
offer will be available from.
For offer updates, it
schedules value updates for
the following data:

 sale_price

 recommended_price

 stock
 handling_time

 vat_id

 warranty

 status
All other data will be
updated on the fly. Using
start_date, for example, you
can schedule the
inactivation of an offer, a
price update, etc.

Optional. Text in YYYY-MM-DD
format. Date can be as far as
60 days in the future (cannot
be earlier than tomorrow).
Cannot be null.

start_date=”2014-12-31”

warranty The warranty offered in
months.

Required/Optional based on
category.
Default value:
- 0 (no warranty) if optional
- No default if required.
Integer between 0 and 255.

warranty=24

Resource Example Context

product_offer/save
new_offer.txt

http method: POST

2.12. Reading commission for an offer

In order to read the estimated commission for an offer, a new REST API is available. Please consult the API Swagger.

3. Updating stock
In order to update only the stock of an offer a REST resource is available

https://marketplace.emag.ro/documentation/api/external

26

Resource Resource URL Method Authorization Headers Parameters

offer_stock MARKETPLACE_API_URL/offer_stock/{resourceId} PATCH Basic (Base64) Content-Type application/json resourceId

The resourceId parameter represents the Seller internal product id. This is the primary key for identifying a product

offer.

Resource Example Context

offer_stock
offer_stock.txt

http method: PATCH

4. Proposing offers in campaigns

To propose a valid offer in a campaign the resource is campaign_proposals and the available action is save.

Proposing offers in campaigns

Key – level 1 Key – level 2 Description Constraints Example

id

Seller internal product id.
This is the primary key for
identifying a product offer.

Required. Integer value
between 1 and 16777215.

id=243409

sale_price Seller offer sale price without
VAT available in the
campaign

Required. Decimal value
greater than 0. Up to four
decimals.

sale_price=51.6477

original_sale_price Seller offer recommended
retail price before discount,
without VAT available in the
campaign. If set, the offer will
be displayed as promo.

Optional. Decimal value
greater than 0. Up to four
decimals. Must be greater
than sale_price.

original_sale_price
=51.6477

stock Available stock for the
campaign. Once the stock
has finished, the product can
no longer be ordered.

Required. Integer value
between 0 and 255.

stock=1

max_qty_per_order The maximum quantity that a
customer can order for a
product from the campaign.
This column is mandatory for
stock in site campaigns.

Required/Optional depending
on campaign type. List of
arrays.

max_qty_per_order=4

post_campaign_sale_pri
ce

 Product price after campaign
end. The automatically filled
price is the sale price of the
product from the moment
when offers are downloaded.

Optional. Decimal. Up to four
decimals.

post_campaign_sale_pric
e=55.6477

27

Proposing offers in campaigns

Key – level 1 Key – level 2 Description Constraints Example

post_campaign_original_
sale_price

 Recommended retail price
before discount of the
product, available after
campaign end.

Optional. Decimal. Up to four
decimals.

post_campaign_original_s
ale_price=60.6477

campaign_id

eMAG internal campaign ID
in which the proposal will be
uploaded

Required. Integer value
between 1 and 16777215.

campaign_id=344

Resource Example Context

campaign_proposals/save
campaign_proposal

s.txt

http method: POST

5. Processing orders
An order consists of customer details, products and discounts from vouchers. It also has information about payment

method, shipping tax. Also, each order always has a status attached. The available statuses are:

0 – canceled

1 – new

2 – in progress

3 – prepared

4 – finalized

5 – returned

The resource is order and the available actions are read, save, count and acknowledge.

5.1. Order fields

An order has the following properties:

Key – level 1 Key – level 2 Description Constraints Example

id The number that uniquely identifies an
order.

Required. Integer
value between 1
and 4294967295.

id=939393

status The order processing status. Possible
values:
0 - cancelled
1 - new
2 - in progress
3 – prepared
4 - finalized
5 - returned

Required. Integer
value between 0
and 5.

status=1

28

is_complete A flag indicating if the order is complete
(has all details necessary for processing)
or not. Possible values:
0 - incomplete;
1 - complete.

Optional. Integer
value.

is_complete=1

type A flag indicating if the order contains
products fulfilled by eMAG or by seller.
Possible values:
2 – fulfilled by eMAG
3 – fulfilled by seller

Optional. Integer
value.

type=3

payment_mode_id The order payment method. Possible
values:
1 - COD (cash on delivery)
2 - bank transfer
3 - online card payment

Required. Integer. payment_mode_id=1

detailed_payment_method The detailed order payment method. Optional. String. detailed_payment_method
= “eCREDIT”

delivery_mode The order delivery method. Possible
values:
“courier” – home delivery
“pickup” – locker delivery

Optional. String. delivery_mode=”courier”

details Order extra details. Optional. Array.

details locker_id The pickup point id, if the locker delivery
option was selected by a customer.

Optional. String. locker_id=”dce0b7cf-dc38-
11e8-a7d8-001a4a160153”

 locker_name The pickup point name, if the locker
delivery option was selected by a
customer.

Optional. String. locker_name=”easybox
eMAG Showroom”

date The cart submission timestamp. Optional. Text in
YYYY-mm-dd
HH:ii:ss format.

date=”1970-01-01
23:59:59”

payment_status The online payment status. Only used
for online payment methods. Possible
values:
0 - not paid
1 - paid

Required only for
online payment
methods. Integer.
It is highly
recommended to
also interpret the
payment status
when reading
orders with Card
Online payment
method.

payment_status=0

cashed_co The cashed amount from Card online
payment

Optional. Integer.

cashed_cod The cashed amount from cash on
delivery payment

Optional. Integer.

shipping_tax The shipment tax value. Optional.
Decimal.

shipping_tax=”19.99”

29

shipping_tax_voucher_split A list of arrays describing the voucher
discounts distribution on shipping tax
level.

List.

 voucher_id The ID of the voucher discount Optional. Integer
value between 1
and 9999999.

voucher_id=123

 value The value of the discount, whitout VAT Optional.
Negative value.

value=-200

 vat_value The value of the VAT Optional.
Negative value.

Vat_value=-38

customer A list with the details about the
customer, the shipping and the billing
addresses.

Optional. List. The field list is detailed
below.

products A list of arrays describing the products in
the order.

List. The field list is detailed
below.

attachments A list of arrays describing the
attachments in the order.

List. The field list is detailed
below (chapter 3.1.3).

vouchers A list describing the voucher discounts. List.

vouchers voucher_id The ID of the voucher discount Optional. Integer
value between 1
and 9999999.

voucher_id=123

 modified The modified date of the voucher
discount

Optional. Text in
YYYY-mm-dd
HH:ii:ss format.

modified="2015-04-23
11:30:09"

 created The date of the voucher discount Optional. Text in
YYYY-mm-dd
HH:ii:ss format.

created="2015-04-23
11:30:09"

 status The status of the voucher discount Optional. Integer. status=1

 sale_price_vat The value of the VAT Optional.
Negative value.

sale_price_vat=”-1.9355"

 sale_price The value of the discount, without VAT Optional.
Negative value.

sale_price="-8.0645"

 voucher_name The name of the voucher Optional. String. voucher_name="eMAG
giftcard"

 vat The VAT rate Optional.
Decimal.

vat="0.24"

 issue_date The date when the voucher was issued Optional. Text in
YYYY-mm-dd
format.

issue_date="2020-06-09"

is_storno Mandatory key when products are
returned for a finalized order. Further
details here.

Optional.
Boolean.
True indicates
partial storno.

is_storno=true

30

5.1.1. Product field in order details

Key – level 1 Key – level 2 Description Constraints Example

id eMAG internal order product
line id. Any update on order
product lines must use this
id.

Required. Integer value
between 1 and 9999999.
id=243409

id=123

product_id Seller internal product id.
This is the primary key for
identifying a product offer.

Optional. Integer. product_id=3331

cancellation_reason The order cancellation reason. Possible
values:

1 - Out of stock
2 - Cancelled by the client
3 - The client can not be contacted
15 - Courier delivery term is too large
16 - Transport tax, is too large
17 - Large delivery term, until the
product will arrive in our warehouse
18 - Better offer in another store
19 - Payment order has not been paid
20 - Undelivered order, courier reasons
21 - Others
22 - Order Incomplete - automatic
cancellation
23 - The customer changed his mind
24 - By customer request
25 - Failed delivery
26 - Late shipment
27 - Irrelevant Order
28 - Canceled by SuperAdmin on seller
request
29 - Blacklisted customer
30 - No VAT invoice
31 - The eMAG Marketplace partner
requested the order cancellation
32 - The delivery estimate is too long
33 - The product is no longer available
in the stock of the eMAG Marketplace
partner
34 - Other reasons
35 - The delivery is too expensive
36 - The customer found a better price
elsewhere
37 - The customer registered another
eMAG order with a similar product
38 - The customer changed his mind,
does not need the product
39 - The customer can purchase the
product only by installments

Optional. Integer
value between 1
and 5.

cancellation_reason=1

31

Key – level 1 Key – level 2 Description Constraints Example

product_voucher_split A list of arrays describing the
voucher discounts
distribution on product level.

List.

 voucher_id The ID of the voucher
discount

Optional. Integer value
between 1 and 9999999.

voucher_id=123

 value The value of the discount,
whitout VAT

Optional. Negative value. value=-200

 vat_value The value of the VAT Optional. Negative
value.

Vat_value=-38

status The status of product of the
order. Possible values:
0 - cancelled
1 - active

Required. Integer. status=1

part_number Manufacturer unique
identifier for the product.

Optional. String between
1 and 25 characters.
Important:
The following characters
will be automatically
stripped:

 spaces []

 comma [,]

 semicolon [;]
Example: “part number;”
will be saved
“partnumber”

part_number='682133frs'

created The date when the order
product line was created.

Optional. Text in YYYY-
mm-dd HH:ii:ss format.

created='2014-07-24
12:16:50'

modified The date when the order
product line was last
modified.

Optional. Text in YYYY-
mm-dd HH:ii:ss format.

modified='2014-07-24
12:18:53'

currency Product price currency. Optional. String. currency='RON'

quantity Product quantity. Required. Integer.
Positive, different than
0.

quantity=2

sale_price The sale price without VAT. Required. Integer. sale_price=12.1234

details Additional product notes. Optional. Text. details=”text”

status The status of product of the
order. Possible values:
0 - cancelled
1 - active

Required. Integer. status=1

sale_price The sale price without VAT. Required. Integer. sale_price=12.1234

details Additional product notes. Optional. Text. details=”text”

32

IMPORTANT

Please note that multiple vouchers, possibly having different VAT rates, can be applied on a product. You should always

read all voucher parameters.

33

5.1.2. Customer fields in order details

The customer field has the following properties:

Key Description Constraints Example

id The number that uniquely identifies a customer. Optional. Integer value
between 1 and2147483647.

id=1

name The customer's name. Optional. Text. name=”Surname Name”

email This is a hash that uniquely identifies the
customer’s email.

Optional. Text. email=”1243536@emag.ro”

company The name of the company. For physical person it
has the same value as name.

Optional. Text. company=”Company name ltd.”

gender The customer gender. Possible values:
M - male
F – female

Optional. Text. gender=”M”

code The company registration code. Optional. Text. code=”14399840”

registration_number The company registration number. Optional. Text registration_number=”
40/372/2002”

bank The bank name. Optional. Text. bank=”Bank name”

iban The bank account. Optional. Text. iban=”
RO24BACX0000000031430310”

fax The customer's fax number. Optional. Text. fax=”4021123123”

legal_entity A flag indicating if the customer is physical or
juridical entity. Possible values:
0 - private entity;
1 - legal entity.

Optional. Integer value. legal_entity=1

is_vat_payer A flag indicating it the customer is vat payer.
Possible values:
0 - the customer is not vat payer;
1 - the customer is vat payer.

Optional. Integer value. is_vat_payer=0

phone_1 The customer's first phone number. Optional. Text. phone_1=”4021123123”

phone_2 The customer's second phone number. Optional. Text.

phone_3 The customer's third phone number. Optional. Text.

billing_name The customer's invoice name. Optional. Text. billing_name=”Surname Name”

billing_phone The customer's invoice phone. Optional. Text. billing_phone=”4021123123”

billing_country The customer's invoice country. Optional. Text. billing_country=”Romania”

billing_suburb The customer's invoice county. Optional. Text. billing_suburb=”Suburb”

billing_city The customer's invoice city. Optional. Text. billing_city=”City”

34

Key Description Constraints Example

billing_street The customer's invoice address. Optional. Text. billing_street=”Street Name”

billing_postal_code The customer's invoice postal code. Optional. Text. billing_postal_code=”23125”

shipping_contact The name of the contact person that will pick up
the parcel. Should be printed on the AWB.

Optional. Text. shipping_contact=”Name
Surname”

shipping_phone The phone used by the courrier to contact the
shipping person. Should be printed on the AWB.

Optional. Text. shipping_phone=”23125”

shipping_country The customer's shipping country. Optional. Text. shipping_country=”Romania”

shipping_suburb The customer's shipping county. Optional. Text. shipping_suburb=”Suburb”

shipping_city The customer's shipping city. Optional. Text. shipping_city=”City name”

shipping_street The customer's shipping suburb. Optional. Text. shipping_street=”Street name”

shipping_postal_code The customer's shipping postal code. Optional. Text. shipping_postal_code=”23125”

billing_locality_id This field uniquely identifies a locality in the
eMAG database.
It represents the billing locality.

Integer value between 1
and 4294967295.

billing_locality_id=”23”

shipping_locality_id This field uniquely identifies a locality in the
eMAG database.
It represents the shipping locality.

Integer value between 1
and 4294967295.

shipping_locality_id=”23”

5.1.3. Order invoices

When pushing orders into finalized status, you should also send the invoice PDF file location for the specific order.

The resource is order/attachments and the available action is save.

The following keys should be sent in attachments array in order to display an invoice in the customer’s order details: name,

url, type.

An attachment has the following properties:

Key Description Constraints Example

order_id The number that uniquely identifies an order. Required. Integer value
between 1 and 4294967295.

id=939393

name The name of the attachment displayed to the customer (in order
history or in email)

Optional. String between 1
and 60 characters

name='Invoice
title'

url Attachment URL. Required. String between 1
and 1024 characters. Valid
URL to document.

url=”http://valid-
url/invoice.pdf”

type The type of document attached to the order. Possible values are:

 1 - invoice
 3 - warranty

 4 - user manual

Integer. Optional. Default
1=”Invoice”. Only .pdf files
are accepted

type=1

http://valid-url/
http://valid-url/

35

Key Description Constraints Example

 8 - user guide

 10 - AWB

 11 - proforma

force_download Flag used in order to force attachment download restrictions. If value is
0 and the attachment URL has not changed, the attachment will not be
downloaded again.

Integer. Optional. Default
value 0. Possible values: 0,1.

force_download=0

5.2. Order notification, acknowledgment and order filters

When a new order is placed in eMAG Marketplace for the first time, it’s status is 1 (new) and a GET request with the order

id is automatically made to an URL you provide (call-back URL). Ex: http://valid_url/path?order_id=123

In the next step, you should read the order passing the id previously mentioned and after successfully saving the order in

your database you should notify us by calling back the API using the route MARKETPLACE _URL/api-

3/order/acknowledge/[orderId]. This stops the order notification system for the mentioned order. Unless acknowledged,

we will notify the new orders for up to 48 hours.

IMPORTANT:

 Order acknowledge is the only method of marking the order status as “in progress”.

 Clients may ask for an order to be canceled, this will be done by eMAG only if the order was not acknowledged by
the seller, thus some of the orders may be read directly with status 0 (canceled).

5.3. Order status matrix

The following matrix defines the order flow in eMAG Marketplace:

 New status

Actual status 1 - New 2 - In progress 3 – Prepared 4 - Finalized 0 - Canceled 5 - Returned

1 - New No Yes by ACK only No No No No

2 - In progress No Yes Yes Yes Yes No

3 - Prepared No No Yes Yes Yes No

4 - Finalized No No Yes in 48h max Yes Yes in 48h max Yes in RT* + 5 days max

0 - Canceled No Yes in 48h max Yes in 48h max Yes in 48h max Yes No

5 - Returned No No No No No No

 *RT = return time allowed to customers

IMPORTANT:

 We recommend setting up a periodical /order/read (cron, agent) that should identify orders that were not
acknowledged. By default on /order/read we expose the last 100 orders, but you can request up to 1000 or use
pagination. Do not forget to test the order status matrix against your internal order workflow. As a best practice
you should either acknowledge the order prior the read or re-read the order after acknowledging it; an order can
be modified by eMAG employees upon the client’s request as long as it is not acknowledged;

 You can only edit the order (add/remove products modify quantity or price) when in status 2 (in progress) or 3
(prepared);

http://valid_url/path?order_id

36

 Once an order is finalized, you can change its status back to status 3 (prepared) or 0 (canceled) only in the first 48
hours since finalization;

 Order status “finalized” will be set automatically when issuing the first AWB for that order. See chapter Saving
AWBs;

 The order status “returned” is set automatically when all the products from the initial invoice are marked as
returned. The change is permitted only within the maximum return timeframe allowed to the customer.

5.4. Order filters

You can read all your orders though the API, using filters. The following are available when counting orders:

Key Description Constraints

id Only the order with this value. Optional. Integer value between 1
and4294967295.

createdBefore Only the orders created before the specified date.
Can only be set if “createdAfter” is present. Maximum 1 month
difference.

Optional. Text in YYYY-mm-dd HH:ii:ss
format.

createdAfter Only the orders created after the specified date. Can only be set if
“createdBefore” is present. Maximum 1 month difference.

Optional. Text in YYYY-mm-dd HH:ii:ss
format.

modifiedBefore Only the orders modified before the specified date. Can only be set if
“modifiedAfter” is present. Maximum 1 month difference.

Optional. Text in YYYY-mm-dd HH:ii:ss
format.

modifiedAfter Only the orders after before the specified date. Can only be set if
“modifiedBefore” is present. Maximum 1 month difference.

Optional. Text in YYYY-mm-dd HH:ii:ss
format.

status Only the orders with the specified status. It is a single value or a list of
values.

Optional. Integer or list.

payment_mode_ id Only the orders with the specified payment method id. It is a single
value or a list of values.

Optional. Integer or list.

is_complete Only the orders with the specified completion status. Optional. Order completion status.
1 – complete orders
0 – incomplete orders

type Only the orders with the specified type Optional. Default value = 3.
2 – fulfilled by eMAG
3 – fulfilled by seller

The following filters are available when reading orders:

Key Description Constraints

itemsPerPage The maximum number of orders to return. Optional. Integer value between 1
and 100.

currentPage The page offset. Optional. Integer value between 1
and 65535.

37

Key Description Constraints

id Only the order with this value. Optional. Integer value between 1
and4294967295.

createdBefore Only the orders created before the specified date. Can only be set if
“createdAfter” is present. Maximum 1 month difference.

Optional. Text in YYYY-mm-dd
HH:ii:ss format.

createdAfter Only the orders created after the specified date. Optional. Text in YYYY-mm-dd
HH:ii:ss format.

modifiedBefore Only the orders modified before the specified date. Can only be set if
“modifiedAfter” is present. Maximum 1 month difference.

Optional. Text in YYYY-mm-dd
HH:ii:ss format.

modifiedAfter Only the orders after the specified date. Optional. Text in YYYY-mm-dd
HH:ii:ss format.

status Only the orders with the specified status. It is a single value or a list of values. Optional. Integer or list.

payment_mode_id Only the orders with the specified payment method id. It is a single value or a
list of values.

Optional. Integer or list.

is_complete Only the orders with the specified completion status. Optional. Order completion status.
1 – complete orders
0 – incomplete orders

type Only the orders with the specified type Optional. Default value = 3.
2 – fulfilled by eMAG
3 – fulfilled by seller

5.5. Updating orders

You cannot create new orders through the API, you can only read and update them. When updating an order, the seller

should send ALL the fields initially read.

IMPORTANT:
 Updating products by reducing their quantities for orders with Online Card payment method is no longer possible.

 Updating product prices is no longer available

 A canceled order can no longer be reactivated if more than 48 hours have passed since cancelation

Resource Example Context

order/save
order_update.txt

http method: POST

5.5.1. Removing products from an order

To remove a product from the order send the status=0 for the product or do not send it at all. Products can be removed

from an order only while in status 2 or 3 (in progress or prepared) for orders with payment methods different than Online

card. For returned products (the order is in status 4, finalized), please use the storno route.

IMPORTANT: Removing products for orders with Online Card payment method is no longer possible.

38

5.5.2. Adding products to an existing order

To add a new product to an existing order, add it to the order by sending the product id (mandatory), name, status and

sale price.

IMPORTANT: virtual products such as internal discounts can be inserted in an order, even if they were not previously sent

to eMAG. Adding these products to an order will not make them available for purchase in the eMAG Marketplace platform.

5.5.3. Returned products and storno route

A finalized order cannot be modified, it can be fully reversed by changing the order status from finalized (4) to returned

(5) or have only some of the products reversed using a call with is_storno key true.

The following conditions must be met in order for a partial storno to occur:

 Order must be in status 4

 At least one product quantity was reduced

The following scenarios can be used as a guideline for returning products (partial storno) from a finalized order:

Current order status Request isError Order read

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 1,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),
'is_storno'=true

FALSE status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 1,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,

FALSE status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 0,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

39

Current order status Request isError Order read

 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

 'product_id' => '2',
 'quantity' => 0,
 'sale_price' => '123.4567',
 'status' => 1,
),
),
'is_storno'=true

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 0,
),
),
'is_storno'=true

FALSE status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 0,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 1,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

TRUE The request will be discarded, as you are
trying to modify a finalized order without
is_storno key.

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',

TRUE The request will be discarded, as you are
sending is_storno key without any change
to an order line

40

Current order status Request isError Order read

 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),
'is_storno'=true

status' => 3,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

status' => 3,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),
'is_storno'=true

TRUE The request will be discarded, as you are
sending is_storno key for an order with a
status different than 4

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
),

status' => 4,
'products' =>
 array (
 0 =>
 array (
 'id' => 1,
 'product_id' => '1',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 1 =>
 array (
 'id' => 2,
 'product_id' => '2',
 'quantity' => 2,
 'sale_price' => '123.4567',
 'status' => 1,
),
 2 =>
 array (

TRUE The request will be discarded, as you are
trying to send a negative quantity for a
product

41

Current order status Request isError Order read

 'id' => 2,
 'product_id' => '2',
 'quantity' => -1,
 'sale_price' => '123.4567',
 'status' => 1,
),
),
'is_storno'=true

6. Shipping orders

For electronic deliveries and downloadable goods, please skip this section. Shipping an eMAG Marketplace order requires

the seller to issue an AWB using eMAG Marketplace API.

The resource is AWB and the available actions are read and save

6.1. Saving AWB

To save an AWB just call the API with the following parameters:

Key Description Constraints

order_id Identifies the order Required. Integer value between 1
and 4294967295.
Must be a valid order in the eMAG database, and
must be owned by the seller.

rma_id Identifies the return request Optional. Integer value between 1
and 4294967295.
Must be a valid return request in the eMAG
database, and must be owned by the seller.

sender *Array explained below

receiver *Array explained below

locker_id The pickup point id. Should be filled in with the pickup point id
received on the order. If filled in, the courier will deliver the parcel
in the designated locker.

Optional. String value between 3 and 255
characters

is_oversize If set to 1, marks the delivery as containing oversized products Required. Value can only be 0 or 1.

insured_value The insured value Optional. Double value between 0 and
999999999

weight The weight of delivery Optional. Double value between 0 and 99999

envelope_number Number of envelopes to be delivered Required. Integer value between 0 and 9999. If
parcel_number is 0, this parameter cannot be 0

parcel_number Number of parcels to be delivered Required. Integer value between 0 and 999. If
envelope_number is 0, this parameter cannot be
0

42

Key Description Constraints

observation Observation text Optional. String value between 0 and 255

cod Cash on delivery Required. Double value between 0 and
999999999

courier_account_id Unique identifier for seller’s courier account. If not provided, a
default account will be used.

Optional. Integer.

pickup_and_return If set to 1, sender expects something in return to this expedition
(documents, buy-back products, etc).

Optional. Value can only be 0 or 1.

saturday_delivery If set to 1, sender requests the package to be delivered on Saturday. Optional. Value can only be 0 or 1.

sameday_delivery If set to 1, sender requests the package to be delivered the same
day.

Optional. Value can only be 0 or 1.

An AWB S/R (sender/receiver) has the following properties:

Key Description Constraints

name S/R's name Required. String value between 3 and 255

contact Receiver's contact person name Required. String value between 1 and 255

phone1 S/R first phone number Required. String value between 8 and 11 digits (only '+' character is allowed at the
beginning of the string)

phone2 S/R second phone number Optional. String value between 8 and 11 digits (only '+' character is allowed at the
beginning of the string)

legal_entity If Receiver is legal entity (applicable only
to receiver)

LEGAL_ENTITY_NO = 0
LEGAL_ENTITY_YES = 1

locality_id S/R's locality_id Required. Integer value between 1 and 4294967295.
Must be a valid locality in the eMAG database.

street S/R's street Required. String value between 3 and 255

zipcode S/R's zipcode Optional. String value between 1 and 255

IMPORTANT:

 For orders with “pickup” as a delivery method if you do not change the locker id that is already included in the

“shipping_street” field the AWB will be issued as a locker delivery using the proper courier account regardless of the

actual courier account you specified when issuing the AWB.

6.2. Reading AWB

The following filters are available when reading AWBs:

Key Description Constraints

emag_id The eMAG internal barcode id Integer value between 1 and 4294967295.

43

Key Description Constraints

Must be a valid AWB in eMAG database.

reservation_id The eMAG internal AWB reservation id Integer value between 1 and 4294967295.
Must be a valid AWB in eMAG database.

An AWB has the following properties:

AWB – read

Key – level 1 Key – level 2 Description Constraints Example

emag_id The eMAG internal AWB id Integer. emag_id=243409

order_id The id of the order on which the AWB was
issued

Integer. order_id=243409

rma_id The id of the return request on which the
AWB was issued

Integer. rma_id=243409

weight The weight of delivery Integer. weight=1

awb_type The type of delivery. Possible values:
1 – delivery to customer
2 – pickup from customer

Integer. awb_type=1

awb The AWB List of arrays.

 emag_id

The eMAG internal AWB barcode id

Integer emag_id=243409

 awb_number The AWB number String awb_number =
“2EMG00011012”

 awb_barcode The AWB barcode String awb_barcode =
“2EMG00011012001”

status The status of the delivery List of arrays.

 code The code status of the delivery String. code=”DLV”

 name The name of the status of the delivery String. name=”Delivered”

 description The description of the status of the delivery String. description=”AWB
delivered”

 courier The courier used for issuing the AWB List of arrays.

 courier_account_id The eMAG internal courier account id used
for issuing the AWB

Integer. courier_account_id=5186

 courier_name The eMAG internal courier name used for
issuing the AWB

String. courier_name="SAMEDAY"

44

6.3. Reading AWB PDF files

To download an AWB PDF file call the MARKETPLACE_API_URL/awb URL as in the example below

<html>
Running...

<?
$username = 'user';
$password = 'pass';
$hash = base64_encode($username . ':' . $password);
$headers = array(
'Authorization: Basic ' . $hash
);
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL,'https://marketplace-api.emag.ro/awb/read_pdf?emag_id=9755945&awb_format=A4';
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, 'GET');
curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
$result = curl_exec($ch);
echo $result . "\n";
?>
</html>

Optional: You can set the paper format on PDF download link by using the parameter "awb_format=A4" in the link. The

possible values are A4, A5, A6.

The following method will be released in the near future (H1 2021)

To download an AWB just call the API with the following parameters:

Key Description Constraints

emag_id The AWB's eMAG id. Integer value between 1 and 4294967295.
Must be a valid AWB in eMAG database.

awb_format The paper format on PDF download The possible values are A4, A5, A6 and ZPL

6.4. Reading AWB ZPL type

To read an AWB in ZPL type call the MARKETPLACE_API_URL/awb URL as in the example below

<html>
Running...

<?
$username = 'user';
$password = 'pass';
$hash = base64_encode($username . ':' . $password);
$headers = array(
'Authorization: Basic ' . $hash
);
$ch = curl_init();

45

curl_setopt($ch, CURLOPT_URL,'https://marketplace-api.emag.ro/awb/read_zpl?emag_id=9755945';
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, 'GET');
curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
$result = curl_exec($ch);
echo $result . "\n";
?>
</html>

Using this request will return a base64 encoded content of the ZPL format as in the example below

Resource Example Context

awb/read_zpl
read_zpl response

example.txt

http method: POST

6.5. Counting Localities

In order to issue an AWB you need to submit the correct locality id. You can also use the id from the order.

The resource is locality and the available actions are read and count.

The following filters are available when counting localities:

Key Description Constraints

emag_id The locality with this id Integer

name All localities with this name String of length between 0 and 60

modified All localities modified after this date Date with the 'Y-m-d H:i:s' format

6.6. Reading Localities

The following filters are available when reading localities:

Key Description Constraints

emag_id The locality with this id Integer

name All localities with this name String of length between 0 and 60

modified All localities modified after this date Date with the 'Y-m-d H:i:s' format

itemsPerPage The maximum number of localities to return. Optional. Integer value between 1 and 100.

46

Key Description Constraints

currentPage The page offset. Optional. Integer value between 1 and 65535.

A locality has the following properties:

6.7. Reading courier accounts

In order to issue an AWB you need to submit the correct courier account id.

7. Processing return requests
A return request consists of customer details, products and reason for returning products. Each return request always has

a status attached. The available statuses are:

1 - incomplete

2 - new

3 - acknowledged

4 - refused

Key Description Constraints

emag_id The id of the locality Integer

name The name of the locality String of length between 0 and 60

region([1-4]+) Region name String of length between 0 and 60

region([1-4]+)_latin Region name latin version String of length between 0 and 60

geoid Geographic id of the location Integer

modified Last modification date Date with the 'Y-m-d H:i:s' format

Key Description Constraints

account_id The id of the
account

Integer

account_display_name The name of the
account

String of length between 0 and 60

courier_account_type The type of the
account

Integer. Possible values: 1 - RMA; 2 - Order; 3 - RMA & Order; 4 - Non Marketplace

courier_name The name of the
courier

String of length between 0 and 60

courier_account_properties The courier account
properties

Array. Possible values: 1 – Regular; 4 – Locker delivery

created The account
creation date

Date with the 'Y-m-d H:i:s' format

status Account status Integer. Possible values: 1 - Active; 0 - Inactive

47

5 - canceled

6 - received

7 - finalized

The resource is RMA and the available actions are read, save.

Return requests fields

The message structure for both read and save actions is detailed below:

RMA – read and save/update

Key – level 1 Key – level 2 Description Constraints Example

emag_id Return request eMAG system ID Required.
Type: bigint

 id Seller internal return request ID Type: bigint

 order_id The id of the order in which the product
to be returned was included

Required.
Type: bigint

type A flag indicating if the return request
contains products fulfilled by eMAG or
by seller. Possible values:
2 – fulfilled by eMAG
3 – fulfilled by seller

Optional.
Type: Integer.

type=3

 invoice_number Invoice of the order in which the
product to be returned was included

Optional.
Type: varchar
Default value: NULL

 customer_name Customer name Required.
Type: varchar

 customer_company Customer company info Optional.
Type: varchar
Default value NULL

 customer_phone Customer phone no. Required.
Type: varchar

 products Product to be returned info Array

 id eMAG internal return product line id.
Any update on return product lines
must use this id.

Required. Integer
value between 1 and
9999999.

id=123

 product_emag_id Product to be returned eMAG ID

 product_id Product to be returned seller internal ID Required.
Type: int

 quantity Product quantity Required
Type: int

 product_name Product name Required.
Type: varchar

48

RMA – read and save/update

Key – level 1 Key – level 2 Description Constraints Example

 return_reason It holds the return reason selected by
the customer. In the attached files you
will find the possible IDs for the return
reasons and their hierarchy.

return_reasons_RO.xl

sx

return_reasons_BG.xl

sx

return_reasons_HU.xl

sx

Note: If you opt for a return reason that
has other higher level reason(s), you
will only need to fill in the last level ID
from the hierarchy.

Required
Type: int

 observations Free text notes field.

Note: According to the attached files
above, the observations key could be
optional (value 0 or value 1) or
mandatory (value 2).

Optional/ Required
Type: text
Default value: NULL

 diagnostic Diagnostic after product analysis Optional.
Type: int
Default value NULL

 reject_reason Reason of return rejection Optional.
Type: int
Default value NULL

 refund_value Refund value Optional.
Type: varchar

awbs Issued AWBs List of arrays.

 reservation_id eMAG internal AWB reservation id. Use
this id to read an AWB

Optional.
Type: int

reservation_
id= 4528511

 pickup_country Required.
Type: Varchar

 pickup_suburb Required.
Type: Varchar

 pickup_city Required.
Type: Varchar

 pickup_address Required.
Type: Varchar

 pickup_address_id Id of address already saved on the
customers' account

Optional.
Type: Int

49

RMA – read and save/update

Key – level 1 Key – level 2 Description Constraints Example

Default value: NULL

 pickup_zipcode Optional.
Type: Varchar
Default value: NULL

 pickup_date Returned product pickup date (in case
of vendor pickup from customer)

Optional.
Type: datetime
Default value NULL

pickup_locality_id The internal eMAG ID of the pickup
address city/locality

Required.
Type: int

pickup_method The product pickup method selected by
the customer when inserting the return
request. Possible values:

 1 - eMAG courier

 2 - Seller’s own courier

 3 - Sent by client

Required.
Type: int

 return_reason It holds the return reason selected by
the customer. In the attached files you
will find the possible IDs for the return
reasons and their hierarchy.

return_reasons_RO.xl

sx

return_reasons_BG.xl

sx

return_reasons_HU.xl

sx

Note: If you opt for a return reason that
has other higher level reason(s), you
will only need to fill in the last level ID
from the hierarchy.

Required
Type: int

observations Free text notes field.

Note: According to the attached files
above, the observations key could be
optional (value 0 or value 1) or
mandatory (value 2).

Optional/ Required
Type: text
Default value: NULL

 return_type It holds the return type selected by the
customer. Possible values:
1 - Replacement with same product
2 - Replacement with a different
product
3 - Refund
4 - Cancel payment contract for this
product
5 - Voucher

Required.
Type: Int

50

RMA – read and save/update

Key – level 1 Key – level 2 Description Constraints Example

return_address_id It will hold the id of the return address
selected by the vendor in RMA UI

Optional.
Type: Int
Default value: id of
the address set as
default in vendor
profile address
page.

return_tax_value Shipping tax for refused returned
products (VAT included)
The currency used will be the platforms'
default

Optional.
Type: Float
Default value: NULL

customer_account_iban Type: Varchar
Default value: NULL

customer_account_bank Type: Varchar
Default value: NULL

customer_account_beneficiary Type: Varchar
Default value: NULL

replacement_product_emag_id The eMAG ID of the replacement
product

Type: Int
Default value: NULL

replacement_product_id The seller internal ID of the
replacement product

Type: Int
Default value: NULL

replacement_product_name Type: Varchar
Default value: NULL

replacement_product_quantity Type: Int
Default value: NULL

 date RMA request insertion date Required.
Type: datetime

request_status RMA request status. Possible values:
1 - Incomplete
2 - New
3 - Approved
4 - Refused
5 - Canceled
6 - Received
7 - Finalized

Optional.
Type: Int

7.1. Return requests filters

When reading return requests the following filters are available:

Key Description Constraints

id Seller internal return request ID

51

Key Description Constraints

emag_id eMAG return request ID

order_id Order on which the product to be returned was included

product_id Seller internal returned product ID

product_emag_id eMAG returned product ID

requests_status Return request status ID

date Return request insertion date

7.2. Status change permissions

The following matrix defines the return request processing flow in eMAG Marketplace:

 New status

Actual status 2 - New 3 - Acknowledged 4 - Rejected 5 - Canceled 6 - Received 7 - Finalized

2 - New Yes Yes No Yes No No

3 - Acknowledged No Yes No Yes Yes No
4 - Rejected No No Yes No No No

5 - Canceled No No No Yes No No

6 - Received No No Yes No Yes Yes

7 - Finalized No No No No No Yes
 *Some of the statuses were left out by design; these should not be used in any seller implementation

7.3. Return request deliveries

There are two types of possible deliveries for the return requests:

 pick-up requests - courier picks up the returned product(s) from the customer and delivers them to the seller

 regular deliveries - courier delivers the returned/replaced product back to the customer

 The delivery requests will be generated using the AWB save resource.

7.4. Examples requests and responses

Resource Example Context

RMA/read
reading_rma.txt

http method: POST
Seller has return requests

RMA/read
reading_rma_noreq

uests.txt

http method: POST
Seller does not have return requests

52

RMA/save
saving_rma.txt

http method: POST

8. Invoice API

The following documentation covers the available APIs used to:

 Read invoice categories

 Read invoice data

 Read customer invoice data

8.1. Reading invoice categories

Every MKTP invoice is included in a category. In order to read all invoice data of a specific MKTP invoice type, first call

the following API without any parameter api-3/invoice/categories.

Resource Example Context

invoice/categories
invoice_categories.t

xt

http method: POST

As a result, we will return a collection of categories and the invoice name as follows:

Key – level 1 Key – level 2 Key – level 3 Description Constraints Example

category Invoice type Type: string category='FC'

name

 Invoice type name Type: string name='Commission'

Resource Example Context

invoice/categories
reading_invoice_

categories.txt

http method: POST

8.2. Reading invoice data

URL: api-3/invoice/read

The resource is invoice and for the moment the only available action is read.
Reading invoice data without parameters, will generate a response containing the last 100 invoices.

You can read the invoice details using the following available filters:

53

Key Description Constraints

category The invoice category from the results displayed when calling the api-
3/invoice/categories API.

Optional
category='FC'

number The invoice series+number. Optional
number='C-MKTP-100001'

date_start Only invoices created after date_start. Optional
Text in YYYY-mm-dd format

date_end Only invoices created before date_end. Optional
Text in YYYY-mm-dd format

itemsPerPage The maximum number of invoice data to return. Optional. Integer value between 1 and 1000.
Default value=100.

currentPage The page offset. Default value=1.

Reponse:

Key – level 1 Key – level 2 Key – level 3 Description Constraints Example

total_results Number of invoices
identified

Type:interger total_results=1

invoices category Invoice type Type: string category='FC'

 name Invoice name Type: string name=’Commision’

 number Invoice series+number Type: string number='C-MKTP-100001'

 date The date when the invoice
was created.

Text in YYYY-
mm-dd

date= '2020-07-24'

 is_storno The invoice represents a
reversal of another invoice.

Type: integer is_storno=1/is_storno=0

 supplier name Supplier name (legal name) Type: string
between 1 and
100 characters.

name='Dante International
SA'

 register_number Registration number Type: string
between 1 and
50 characters.

register_number='J40/372/2
002'

 cif Unique Identification Code Type: string
between 1 and
50 characters.

cif='14399840'

 tax_code VAT Number Type: string
between 1 and
50 characters.

tax_code='RO14399840'

 social_capital Subscribed and paid capital Type: string
between 1 and
50 characters.

social_capital='1.210.822
RON'

54

Key – level 1 Key – level 2 Key – level 3 Description Constraints Example

 iban Bank account Type: string
between 1 and
100 characters.

iban='RO73INGB0001008199
078940'

 bank Bank name Type: string
between 1 and
100 characters.

bank='ING BANK'

 address Headquarters Type: string
between 1 and
255 characters.

address=' 148 Virtutii, E47,
060787, Sector 6,
Bucuresti'

 phone_number Phone number Type: string
between 1 and
50 characters.

phone=number='402120052
00'

 customer name Buyer name (legal name) Type: string
between 1 and
100 characters.

name='Test SRL'

 register_number Registration number Type: string
between 1 and
50 characters.

register_number='
JXX/XXX/2002''

 cif Unique Identification Code Type: string
between 1 and
50 characters.

cif='123456'

 tax_code VAT Number Type: string
between 1 and
50 characters.

tax_code='RO123456'

 iban Bank account Type: string
between 1 and
100 characters.

iban='
RO00INGB000000000007000
0'

 bank Bank name Type: string
between 1 and
100 characters.

bank='ING'

 country Country Type: string
between 1 and
100 characters.

country='Romania'

 address Headquarters Type: string
between 1 and
255 characters.

address='Strada ABC,
Bucuresti'

 lines product_name Products/Services
Description

Type: text product_name='Comision
aferent desfasurator
_dc_082015_1443024267_v
1, conform contract'

 unit_of_measure Unit of measure Type: string
between 1 and
20 characters

unit_of_measure='Buc'

 quantity Quantity Type: double quatity=1

55

Key – level 1 Key – level 2 Key – level 3 Description Constraints Example

 unit_price Unit value Type: double unit_price=100

 vat_rate VAT Rate Type: smallint vat_rate=19

 value Product value (without VAT) Type: integer value=119

 vat_value VAT value Type: integer vat_value=19

 payment_term Invoice due date Type: integer payment_term=0

 total_without_vat Total invoice without VAT Type: integer total_without_vat=100

 total_vat_value Total invoice VAT value Type: integer total_vat_value=19

 total_with_vat Total invoice with VAT Type: integer total_with_vat=119

 currency Invoice currency Type: string currency='RON'

8.3. Reading customer invoice data

URL: api-3/customer-invoice/read

The resource is customer-invoice and for the moment the only available action is read.
Reading customer invoice data without parameters, will generate a response containing the last 100 invoices.

You can read the customer invoice details using the following available filters:

Key Description Constraints

category The invoice category: normal or storno invoice. Optional
category='normal' / category='storno'

order_id The order which was invoiced. Optional
order_id='148717039'

number The invoice series+number. Optional
number='PRAF100010'

date_start Only invoices created after date_start. Optional
Text in YYYY-mm-dd format

date_end Only invoices created before date_end. Optional
Text in YYYY-mm-dd format

itemsPerPage The maximum number of invoice data to return. Optional. Integer value between 1 and 1000. Default value=100.

currentPage The page offset. Default value=1.

56

Reponse:

Key – level 1 Key – level 2 Key – level 3 Description Constraints Example

total_results Number of invoices
identified

Type:interger total_results=1

invoices category Invoice type Type: string category='storno'

 order_id The order which was
invoiced.

Type: integer order_id='148717039'

 number Invoice series+number Type: string number='PRAF101092'

 date The date when the
invoice was created.

Text in YYYY-mm-dd date= '2020-11-11'

 is_storno The invoice represents a
reversal of another
invoice.

Type: integer is_storno=1/is_storno=0

 reversal_for The invoice which was
canceled through this
invoice.

Type:string reversal_for='PRAF101030'

 supplier name Supplier name (legal
name)

Type: string
between 1 and 100
characters.

name=Dobre BA Shop SRL'

 register_number Registration number Type: string
between 1 and 50
characters.

register_number='J40/900/2
000'

 cif Unique Identification
Code

Type: string
between 1 and 50
characters.

cif='10874881'

 tax_code VAT Number Type: string
between 1 and 50
characters.

tax_code='RO10874881'

 social_capital Subscribed and paid
capital

Type: string
between 1 and 50
characters.

social_capital='200 RON'

 iban Bank account Type: string
between 1 and 100
characters.

iban='RO02BTRLRONCRT00
W6717503'

 bank Bank name Type: string
between 1 and 100
characters.

bank='BANCA TRANSILVANIA
S.A.'

 country Country Type: string
between 1 and 100
characters.

country='Romania'

57

Key – level 1 Key – level 2 Key – level 3 Description Constraints Example

 address Headquarters Type: string
between 1 and 255
characters.

address='Colentina 32, bl 2
sc 4 et 33
Bucuresti'

 customer name Buyer name (legal name) Type: string
between 1 and 100
characters.

name='Test Test'

 register_number Registration number Type: string
between 1 and 50
characters.

register_number=' '

 cif Unique Identification
Code

Type: string
between 1 and 50
characters.

cif=''

 tax_code VAT Number Type: string
between 1 and 50
characters.

tax_code=''

 iban Bank account Type: string
between 1 and 100
characters.

iban=''

 bank Bank name Type: string
between 1 and 100
characters.

bank=''

 country Country Type: string
between 1 and 100
characters.

country='RO'

 address Headquarters Type: string
between 1 and 255
characters.

address='Strada ABC,
Bucuresti'

 lines product_name Products/Services
Description

Type: text product_name='Usa de
intrare, termopan , model
Roxy white 110x210[61-
110x210] '

 unit_of_measure Unit of measure Type: string
between 1 and 20
characters

unit_of_measure='Buc'

 quantity Quantity Type: double quatity=-1

 unit_price Unit value Type: double unit_price=1008.4

 vat_rate VAT Rate Type: smallint vat_rate=19

 value Product value (without
VAT)

Type: integer value=-1008.4

 vat_value VAT value Type: integer vat_value=-191.6

 total_without_vat Total invoice without
VAT

Type: integer total_without_vat=-1008.4

58

Key – level 1 Key – level 2 Key – level 3 Description Constraints Example

 total_vat_value Total invoice VAT value Type: integer total_vat_value=-191.6

 total_with_vat Total invoice with VAT Type: integer total_with_vat=-1200

 currency Invoice currency Type: string currency='RON'

	1. eMAG Marketplace API
	1.1. Conventions
	1.2. Request, resources and actions
	1.3. Pagination and filters
	1.4. Response
	1.5. Rate limiting
	1.6. Callback URLs

	2. Publishing products and offers
	2.
	2.1. Reading categories, characteristics and family_types
	2.2. Reading VAT rates
	2.3. Reading Handling Time values
	2.4. Sending a new product
	2.4.1. Draft product
	2.4.2. Product

	2.5. Example for a new product
	2.6. Updating existing offer
	2.7. Saving volume measurements on products
	2.8. Reading and counting products and offers
	2.9. Product validation responses
	2.10. Matching products
	2.11. Attaching offers on existing products
	2.12. Reading commission for an offer

	3. Updating stock
	4. Proposing offers in campaigns
	5. Processing orders
	3.
	4.
	5.
	5.1. Order fields
	5.1.1. Product field in order details
	5.1.2. Customer fields in order details
	5.1.3. Order invoices

	5.2. Order notification, acknowledgment and order filters
	5.3. Order status matrix
	5.4. Order filters
	5.5. Updating orders
	5.5.1. Removing products from an order
	5.5.2. Adding products to an existing order
	5.5.3. Returned products and storno route

	6. Shipping orders
	6.
	6.1. Saving AWB
	6.2. Reading AWB
	6.3. Reading AWB PDF files
	6.4. Reading AWB ZPL type
	6.5. Counting Localities
	6.6. Reading Localities
	6.7. Reading courier accounts

	7. Processing return requests
	7.
	7.1. Return requests filters
	7.2. Status change permissions
	7.3. Return request deliveries
	7.4. Examples requests and responses

	8. Invoice API
	8.1. Reading invoice categories
	8.2. Reading invoice data
	8.3. Reading customer invoice data

